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Consider a shock crossing an
interface between two ideal gases
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Matching pressures and velocities across the
interface yields a transcendental equation for
the pressure jump across the transmitted shock
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All other variables
are readily obtained
after solving this
equation.
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Does the RM growth rate obey a
power law at late time?

0 = What are the
h = ct dimensions of ¢?
0 = How is this growth
h oC (Mst) rate derived?

O = lIsitagoodideato
h — ho oC (t — to ) raise dimensional

variables to fractional

0.2<60<0.67 powers?

= What's missing?
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The mixing with (h) and time (f) must
be properly nondimensionalized

= We can eliminate the virtual origin by modeling h
rather than /.

n Normalizingﬁ by its initial value,]f.zo, ensures that
all growth curves start at unity.

= Linear stability theory and experimental evidence
indicate that the growth rate depends on the
dominant perturbation wavelength/ .

= Arelevant timescale thus appears to be /10 /lf.to.

Lawrence Livermore National Laboratory LN PRES oo



How do we get /; ?

= Assume interfacial perturbations are known.
= Define h(t) = / Y ((&)) dx , where y is “product”.

= h(t) is the thickness of mixed fluid that would result
iIf the entrained gases were homogenized in the
transverse plane.

= From continuity, growth rate = mass flux through
equimolar plane:

X o0 4 u
% _2/ 8;5) d:L‘—Q/ 8(9(@ dr = 5{/0 >|/fq
t 50 t T t 101 o /OQ
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The mass-flux definition of the growth
rate has significant advantages:

= No issues of asymmetry between bubbles and
spikes.

= Not sensitive to outliers (like threshold definitions).
= Valid for shocks in either direction.

= Data need only be gathered on a single plane
(PLIF friendly).
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The post-shock density field is obtained
directly from the known perturbations

P _P;
p(x,y,2) = p1+ (p2 — p1) H(z — n(y, 2))
IO—I_(J:v Y, Z) — IOlll T (10/2 o plll) H('/’U o 77_|_(y3 Z))
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The post-shock velocity field can be
obtained from Biot-Savart integration of
the vorticity field

X (x —x*)
do* dy* dz*
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The pressure gradient can be obtained by
assuming an essentially planar shock

dp ~ dpu Ow,,

Oz ot 5 ~ U
@ ~ 0 OJwy N 1 dp dpu
Oy ot p? 0z Ot
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The impulsive approximation allows us to
separate the spatial and temporal
dependence of density and velocity

prp 4 (ot —pYHE) | =0T F (0 T =T p )R

| dp  Op~ dp™  Op~

u R usH() 0z 0z i ( 0z 0z H(t)
dp  dp~ Opt  Op~

7 o ZrF /

oy~ oy ( Jy Oy M)

dpu n
— = $O(1) .
5 = P uso(t)
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The vorticity laid down by the shock is
obtained by integrating over the impulse

0t
Ow
= ~ dt ~ 0
o / -
w+=/0+%d us p”
Yoo Jg= O ot 0z
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The post-shock vorticity can be written
directly in terms of the perturbations

nt
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The post-shock velocity can thus be
computed a priori

on* (y*,2")

JAT oo oo - —y*) + g Z— 2"
b U / / 57— W —Y") 5 )3/2 dy e
2T J oo Jmoo [(m =T (y*, )2 + (y =y )2 + (2 — 2%)?]

How good is the impulsive-planar-shock approximation?
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Mass flux (pou) on the A=0.53
equimolar plane, <§> =0.5 M, =1.1
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Simulation
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Visualization at nondimensional times
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The scaled growth rates collapse for different

Atwood numbers (A > 0) M. =15
, o N,../ A, =0.1
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The scaled growth rates collapse for different

Mach numbers
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The scaled growth rates collapse for different

amplitude/wavelength ratios A=0.53
| o M =15
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Time axis shift for heavy-to-light cases (A <0)

Interface thjckness:
(note that 1, <0 for A <0)

h=ht+h
Thickness is minin}wlum at:
h=(0 t(=—2
h

Shift time axis by this amount
(phase inversion time)

t _ Y nondimensional hO h

. t_O
h, > Th

o o
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The scaled growth rates collapse for different

Atwood numbers (A <0) M, =15
. . /A, =0.1
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The scaled growth rates collapse for different

Mach numbers A=_0.53
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The scaled growth rates collapse for different

amplitude/wavelength ratios A=-0.53
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Do the growth rate curves collapse for different

spectral shapes?
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The scaled growth rates collapse for different
perturbation spectra

A=0.53
= Possible different behavior at late times M. =15
= |nitial perturbation spectra widths are all n,./ A =0.1
rather narrow (less than a decade)
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Collapse of the growth rate curves suggests the
thickness/growth rate history can be
represented by a single equation

= Growth rate curves at later times fit the form

h _| integrating A —h ﬂ
h.—=c@*cel integrating - o — or® tko for 4>0
0 ) T =1 .
th‘)— ¢ for A<O0
= Solve for the unknowns A, A,
’ h A,
o= M0 o h—h, b“l
h|h=h, =TT

o
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Growth rate coefficients

0.4} Gaussian
Power Law
0.2f ] 01l
Bimodal
% 10 20 30 % 10 20 30
T T

Average beyond t >20 ¢=0.813 0 =0.233
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Curve fit matches the later time data well
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Conclusions

= The growth rate of the mixing region is determined solely by the net
mass flux through the equimolar plane.

= The post-shock density and velocity fields (and hence the initial mass
flux) can be accurately modeled if the interfacial perturbations are
known.

= The initial growth rate (computed a priori) can be used to collapse the
mixing curves for various Atwood numbers, Mach numbers etc.

= The collapse of the growth curves (and hence the universality of the
scaling) may depend on whether the initial spectrum is narrow or
broadband.

= A universal value of 8 may only exist for perturbation spectra of the
same form.
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Simulation Setup

Gaussian Perturbation Spectrum

E,(k) oc exp <(kkgkp) >

Perturbation energy

T]P2{MS — <772> — /O E"?(k) dk
Dominant wavelength

_ = E /kdk.

Jo B
Interface profile

E(x,y, 2) = % (1 + Erf (d(:v,gyjz)>>

Distance function

d(w,y, ) = sign(z — n(F, %)) ming= (/& —n(5, )+ (y — 9 + (= — 2)°)

Ao
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Simulation Resolution

= By 2562 x 512, the peak growth rate is within 2% of
the modeled /1,

= A k5Binertial range develops at the two highest

resolutions
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